:: Optimal Selection of Rain Gauge Numbers and Locations for Estimating Mean Rainfall in Fars Province Using a Hybrid Geostatistical and Artificial Bee Colony Approach (Dr. Mohammad Javad Abedini)
The optimal design of rain gauge station networks is one of the classic challenges in applied hydrology. In research and studies over the past three decades, methods with simplifying assumptions have been used to overcome the curse of dimensionality. In the present study, a new and efficient method—without any simplifying assumptions—has been employed for the optimal design of rain gauge station networks. For the first time in this study, geostatistical methods have been used to formulate the objective function, combined with the artificial bee colony (ABC) algorithm, to design and prioritize stations in the rainfall monitoring network. To evaluate the effectiveness of the proposed method, the design of the rain gauge station network in Fars Province—comprising 163 existing non-recording rain gauges and 46 proposed potential stations—was examined using this approach. The artificial bee colony algorithm, due to its limited number of control parameters, exhibits relatively high speed in determining the optimal solution. After running the optimization algorithm for three networks—53 stations (rain gauges installed in fences), 163 stations (non-recording rain gauges), and 209 stations (non-recording rain gauges plus proposed locations)—the results demonstrated the method's efficiency and confirmed its performance compared to existing paradigm in prior studies. While traditional classical methods, relying on simplifying assumptions, fail to address the curse of dimensionality, the proposed method—leveraging the nature of intelligent, randomized, and domain-specific search—can be applied to a wide range of small, medium, or large values of n and is capable of providing an optimal rain gauge network configuration. As the number of rain gauges increases, the optimization algorithm encounters more favorable options for reducing error variance. Given its reasonable speed in obtaining optimal solutions, the proposed method can serve as a reference for validating hypotheses used in other methods designed for medium n values and across a wide range of C(N,n) values in the scientific community. The results of
applying this method across three distinct networks in Fars Province will provide decision-makers with more effective options for daily rainfall monitoring, enhancing the precision of water balance components in annual water balance equations.


برگزاری کارگاه آموزشی در زمینه ریاضیات مالی
عنوان کارگاه:
کاوشی عمیق در مدلسازی تصادفی در بازارهای مالی: از مبانی نظری تا شبیهسازی استراتژی معاملاتی
زمان برگزاری کارگاه روزهای:
شنبه 8 شهریور ساعت 13:40-12:30
یکشنبه 9 شهریور ساعت 13:40-12:30
نحوه ثبت نام :
متقاضی باید وارد سامانه کاربری خود شود و از طریق منوی کارگاههای آموزشی بر روی گزینه ثبت نام اولیه کلیک کنید. پس از تایید ثبت نام شما بوسیله مدیر سایت، ثبت نام نهایی میشود
برای مشاهده جزئیات بیشتر اینجا کلیک کنید.
فایل های مورد نیاز
نمایه شدن در ISC و CIVILICA

پوستر همایش

استان کردستان
دانشگاه کردستان
دانشکده علوم پایه
© کلیه حقوق این وب سایت محفوظ می باشد .